深度学习中的优化算法(Optimizer)理解与python实现

本篇笔记介绍深度学习中最简单的三种优化算法,SGD,Momentum,Nestrov的理解与实现

一、SGD

随机梯度下降法不用多说,每一个参数按照梯度的方向来减小以追求最小化损失函数

更新方式

sgd

Python实现

1
2
3
4
5
6
7
class SGD: 
def __init__(self, lr=0.01):
self.lr = lr

def update(self, params, grads):
for key in params.keys():
params[key] -= self.lr * grads[key]

二 、Momentum

在梯度下降的基础上加入了动量,即前面的梯度将会影响本轮的梯度方向

更新方式

momentum

Python实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Momentum:
def __init__(self, lr=0.01, momemtum=0.9):
self.lr = lr
self.momemtum = momemtum
self.v = None

def update(self, params, grads):
if self.v is None:
self.v = {}
for key, val in params.items():
self.v[key] = np.zeros_like(val)

for key in params.keys():
self.v[key] = self.momemtum * self.v[key] - self.lr * grads[key]
params[key] += self.v[key]

三、Nestrov

Nestrov也是一种动量更新的方式,但是与普通动量方式不同的是,Nestrov为了加速收敛,提前按照之前的动量走了一步,然后求导后按着梯度再走一步

更新方式

nestrov

但是这样一来,就给实现带来了很大的麻烦,因为我们当前是在W的位置上,无法求得W+αv处的梯度,所以我们要进行一定改变。由于W与W+αv对参数来说没有什么区别,所以我们可以假设当前的参数就是W+αv。就像下图,按照Nestrov的本意,在0处应该先按照棕色的箭头走αv到1,然后求得1处的梯度,按照梯度走一步到2。

nestrov_example

现在,我们假设当前的W就是1处的参数,但是,当前的动量v仍然是0处的动量,那么更新方式就可以写作

nestrov2

这样一来,动量v就更新到了下一步的2处的动量。但是下一轮的W相应的应该在3处,所以W还要再走一步αv,即完整的更新过程应该如下所示:

nestrov3

第二行的v是第一行更新的结果,为了统一v的表示,更新过程还可以写作:

nestrov4

Python实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
class Nestrov:
def __init__(self, lr=0.01, momentum=0.9):
self.lr = lr
self.momentum = momentum
self.v = None

def update(self, params, grads):
if self.v is None:
self.v = {}
for key, val in params.items():
self.v[key] = np.zeros_like(val)

for key in params.keys():
self.v[key] = self.momentum * self.v[key] - self.lr * grads[key]
params[key] += self.momentum * self.v[key] - self.lr * grads[key]

但是根据我看到的各个框架的代码,它们好像都把动量延迟更新了一步,所以实现起来有点不一样(或者说是上下两个式子的顺序进行了颠倒),我也找不到好的解释,但是再MNIST数据集上最终的结果要好于原来的实现。

Python实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Nestrov:
def __init__(self, lr=0.01, momentum=0.9):
self.lr = lr
self.momentum = momentum
self.v = None

def update(self, params, grads):
if self.v is None:
self.v = {}
for key, val in params.items():
self.v[key] = np.zeros_like(val)

for key in params.keys():
self.v[key] *= self.momentum
self.v[key] -= self.lr * grads[key]
params[key] += self.momentum * self.momentum * self.v[key]
params[key] -= (1 + self.momentum) * self.lr * grads[key]

四、AdaGrad

前面介绍了几种动量法,动量法旨在通过每个参数在之前的迭代中的梯度,来改变当前位置参数的梯度,在梯度稳定的地方能够加速更新的速度,在梯度不稳定的地方能够稳定梯度。

而AdaGrad则是一种完全不同的思路,它是一种自适应优化算法。它通过每个参数的历史梯度,动态更新每一个参数的学习率,使得每个参数的更新率都能够逐渐减小。前期梯度加大的,学习率减小得更快,梯度小的,学习率减小得更慢些。

更新过程为

adagrad

其中δ用于防止除零错

Python实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class AdaGrad:
def __init__(self, lr=0.01):
self.lr = lr
self.h = None

def update(self, params, grads):
if self.h is None:
self.h = {}
for key, val in params.items():
self.h[key] = np.zeros_like(val)

for key in params.keys():
self.h[key] += grads[key] * grads[key]
params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)

五、RMSprop

AdaGrad有个问题,那就是学习率会不断地衰退。这样就会使得很多任务在达到最优解之前学习率就已经过量减小,所以RMSprop采用了使用指数衰减平均来慢慢丢弃先前得梯度历史。这样一来就能够防止学习率过早地减小。

更新过程如下:

rmsprop

Python实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
class RMSprop:
def __init__(self, lr=0.01, decay_rate=0.99):
self.lr = lr
self.decay_rate = decay_rate
self.h = None

def update(self, params, grads):
if self.h is None:
self.h = {}
for key, val in params.items():
self.h[key] = np.zeros_like(val)

for key in params.keys():
self.h[key] *= self.decay_rate
self.h[key] += (1 - self.decay_rate) * grads[key] * grads[key]
params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)

六、Adam

Adam方法结合了上述的动量(Momentum)自适应(Adaptive),同时对梯度和学习率进行动态调整。如果说动量相当于给优化过程增加了惯性,那么自适应过程就像是给优化过程加入了阻力。速度越快,阻力也会越大。

Adam首先计算了梯度的一阶矩估计和二阶矩估计,分别代表了原来的动量和自适应部分

adam1

β_1 与 β_2 是两个特有的超参数,一般设为0.9和0.999

但是,Adam还需要对计算出的矩估计进行修正

adam2

其中t是迭代的次数,修正的原因在Why is it important to include a bias correction term for the Adam optimizer for Deep Learning? 这个问题中有非常详细的解释。

简单来说就是由于m和v的初始指为0,所以第一轮的时候会非常偏向第二项,那么在后面计算更新值得时候根据β_1 与 β_2的初始值来看就会非常的大,需要将其修正回来。而且由于β_1 与 β_2很接近于1,所以如果不修正,对于最初的几轮迭代会有很严重的影响。

最后就是更新参数值,和AdaGrad几乎一样,只不过是用上了上面计算过的修正的矩估计

adam3

python实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Adam:
def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):
self.lr = lr
self.beta1 = beta1
self.beta2 = beta2
self.iter = 0
self.m = None
self.v = None

def update(self, params, grads):
if self.m is None:
self.m, self.v = {}, {}
for key, val in params.items():
self.m[key] = np.zeros_like(val)
self.v[key] = np.zeros_like(val)

self.iter += 1
lr_t = self.lr * np.sqrt(1.0 - self.beta2**self.iter) / (1.0 - self.beta1**self.iter)

for key in params.keys():
self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])
self.v[key] += (1 - self.beta2) * (grads[key]**2 - self.v[key])

params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)

七、参考

《Deep Learning》花书

《深度学习入门——基于python的理论与实现》